Data exploration definition: Data exploration refers to the initial step in data analysis in which data analysts use data visualization and statistical techniques to describe dataset characterizations, such as size, quantity, and accuracy, in order to better understand the nature of the data.
Data exploration techniques include both manual analysis and automated data exploration software solutions that visually explore and identify relationships between different data variables, the structure of the dataset, the presence of outliers, and the distribution of data values in order to reveal patterns and points of interest, enabling data analysts to gain greater insight into the raw data.
Data is often gathered in large, unstructured volumes from various sources and data analysts must first understand and develop a comprehensive view of the data before extracting relevant data for further analysis, such as univariate, bivariate, multivariate, and principal components analysis.
Manual data exploration methods entail either writing scripts to analyze raw data or manually filtering data into spreadsheets. Automated data exploration tools, such as data visualization software, help data scientists easily monitor data sources and perform big data exploration on otherwise overwhelmingly large datasets. Graphical displays of data, such as bar charts and scatter plots, are valuable tools in visual data exploration.
A popular tool for manual data exploration is Microsoft Excel spreadsheets, which can be used to create basic charts for data exploration, to view raw data, and to identify the correlation between variables. To identify the correlation between two continuous variables in Excel, use the function CORREL() to return the correlation. To identify the correlation between two categorical variables in Excel, the two-way table method, the stacked column chart method, and the chi-square test are effective.
There is a wide variety of proprietary automated data exploration solutions, including business intelligence tools, data visualization software, data preparation software vendors, and data exploration platforms. There are also open source data exploration tools that include regression capabilities and visualization features, which can help businesses integrate diverse data sources to enable faster data exploration. Most data analytics software includes data visualization tools.
Humans process visual data better than numerical data, therefore it is extremely challenging for data scientists and data analysts to assign meaning to thousands of rows and columns of data points and communicate that meaning without any visual components.
Data visualization in data exploration leverages familiar visual cues such as shapes, dimensions, colors, lines, points, and angles so that data analysts can effectively visualize and define the metadata, and then perform data cleansing. Performing the initial step of data exploration enables data analysts to better understand and visually identify anomalies and relationships that might otherwise go undetected.
Download the whitepaper to start leveraging converged telco data analytics at your organization today.